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The motion of particles is examined in a nonuniform moving viscous
medium in the regions Re < 1 and 1< Re = 300, Solutions are pre-
sented for the differential equations which make it possible to calcu-
late the trajectories of particle motion in a nonuniform moving
viscous medium,

The differential equation of motion for a particle
in a nonuniform moving viscous medium is
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The term on the left-hand side of (1) defines

the force needed to produce the acceleration of the
moving particle. The first term in the right~hand side
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Paths of entrainment (deceleration)
of the particles by the medium as
functions of parameters L (curve
1) and D (curve 2).

defines the force of resistance to motion, -resulting
from the viscosity of the medium; the second term
defines the force caused by the acceleration of the me-
dium as the magnitude of the velocity is altered; the
third term defines the force needed fo set the apparent
mass into motion (for spherical particles the apparent
mass is equal to half the mass displaced by the me-
dium sphere); the fourth, integral term takes into con-
sideration the force expended to overcome the additional
resistance of the medium, resulting from the change
in the velocity of particle and medium motion; the
fifth term is the external force applied to the particle.
The nonuniform motion of a particle in a resting
medium has been considered in [1, 2], while the effect

of the integral term on the motion of the particle has
been calculated in [3]. However, the author's evalua-
tion of the extent of influence exerted by the integral
term is applicable to particles with a density ratio
<0.15.

The nonuniform motion of particles in a nonuniform
moving medium was examined in [4—T7] and the extent
of the influence of the integral term was evaluated for
the nonuniform motion of a medium and particle, it
also having been demonstrated that the integral term
may exert considerable influence on the coefficient of
hydrodynamic resistance ¥.

The nonuniform motion of particles in a resting
medium with a coefficient of hydrodynamic resistance
partially taking into consideration the inertial terms
has been considered in [8-12].

Analysis of the integral term in (1) shows that when
ty = ty the integrand becomes infinite. However, the
increase in the integral term is proportional to

lim ©=%% , and it therefore remains a finite quantity.
T+ 0

This indicates that with a rapid change in particle or
medium motion (a large value for the force of accel-
eration) the value of the instantaneous coefficient of
hydrodynamic resistance may considerably exceed its
magnitude for steady-state velocity.

To solve (1) in the region Re < 1 (§ = 24/Re) we.
select a system of coordinates moving together with
the particle. Equation (1) is then transformed (with-
ouf consideration of the external force) to
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It was demonstrated in [6] that the second term in
(2) can be expressed in terms of the pressure gradient
without violating generality:

P o [a(vm)‘ﬂ s (Vm)l]

+ 1.5dty mop | —2———ex—di,. (2)

to

* N,
—va—(:i;- (3)

axi

Equation (2) for the i-th component of medium veloc-
ity (Vy,)i is then transformed to
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Having substituted into (4) the value of
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after appropriate transformations we obtain
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Analysis of (5) shows that the nonlinear terms can
be neglected (without great error) when

d2
Oy, ¢ ‘8“

ox, v

o il < 1. (86}

Condition (6) is easily satisfied for 10~°~10~%-m
particles. Thus, for example, for particles with d =
=10"%m we have 7 - 10~%(8/0xy) | V| < 1. Thus
even for large values of the velocity gradient (8/9xk)
X |Vl ~ 107 the value of (d2/v)(8/3xy) IVl < 1.

The effect of viscosity can be neglected when

IVpJL !V|>>v (7

V.
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On the basis of (6) we can rewrite (7) as

(Vo) 1
d® 8%|Vy)/0x

> L (8)

Analysis of (8) shows that for particles of the above-
indicated dimensions (1~3100 pm)} the condition in (8}
is satisfied without great error in engineering calcu-
lations.

Dropping the nonlinear terms and the subscripts of
the i-th component for the particle and medium veloc-
ities, we transform (5) to

dVp dv,
aV, = aVy+b—=2
dt + m dt +
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where a = 364/d%(2p, + p,).
We rewrite (9) as
Y +ay =F(), (10)

where
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The solution of the differential equation (10) for the
initial conditions t; =tq = 0; y' =Vy; y=01is
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For the solution of the integral term in (11) we
employ the method of successive integration. Let us
agree that for each time segment (integration inter-
val) the medium velocity V., is a constant equal to its
value at the beginning of the interval. Knowing the
initial conditions and integrating successively, we de-
termine the trajectory of particle motion for nonuni-
form particle motion. Depending on the magnitude of
the selected integration interval we attain the desired
degree of calculation accuracy.

Assuming f(x) = L, we transform (11) to

y=CdLt +

_a_s__:_l:&_ (1 — g—at), (12)
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where £ = (2py + py)/36u.
With particle motion in the region Re = 300 we
write (2) in the form
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where A and B are constants equal for the region of
motion Re < 300, respectively, to 0.12 and 37 (for

dt,, (13)

to

- more exact calculations, the values of the constants

are given in [13]). It is demonstrated in [13, 14] that
the calculated values of the coefficient ¢ = A + B/Re
are in satisfactory agreement with experimental data
for decelerated particle motion in a resting medium,



118

i.e., the coefficient of hydrodynamic resistance
takes into consideration the inertial terms (the third
and fourth terms in (13)). We therefore transform (13)

to
nd® dv, ( B
ma A¥e (4B
6 a | Re)X
nd*  dVymnd®
X (Va— Vo)l Ve— Vo 10y ry + Tj?m? 01 (14)

After appropriate transformations of (14) we obtain

dv, 2 . dav,
~L=qaV Vo+(p—1) ===, (15)
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where ¢ = 0.75Ap,/dpy; 8 = 0.75Bu/d%p,.

For successive integration we assume (8 — 1) -
- (dV,,/dt) =D. Then, multiplying both parts of (15) by
dy, after appropriate transformations, we write

Y = d‘Q’O (Vm—vo) . (16)
a Vo + ﬁVo -+ D
Having integrated (16) within limits from y; = 0 to
¥y =y, and the relative particle velocity from V, = V;
to Vy, we obtain the following solutions:
a) when 4D > 2
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where My = (V,, + 0.5E)a(q; — q)™%; g o = 2D(B
£ N)™; N = (8% — 4aD)!/%;
c) when 8% > 4aD and (2aVy + 8) < (B — 4aD)
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where w = (2V  + E)NTY
d) when 8% > 4aD and (2aV, + )% > (82 — 4aD)
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The derived equations (12) and (17)—(21) make it
possible by the method of successive integration to
calculate the trajectory of particle motion in a non-
uniform moving medium.

The figure shows the entrainment (deceleration)
path of the particles by the medium as a function of
the parameter L calculated from Eq. (12) (curve 1)
and of the parameter D calculated from (18) (curve 2).

NOTATION

m is the particle mass, equal to (rd®/6)py; d is

the particle diameter, m; p, and p, are the densities
of the medium and particle, kg/ms; ¥ is the coefficient
of hydraulic resistance of the medium; S is the mid-
cross-sectional area of the particle, equal to rd?/4,
m?; V: Vp: and Vg are the vectors of velocity of the
medium, the particle, and the relative velocity of the
particle (related to the medium), m/sec; y and pare
the medium viscosities, m?/sec, N * sec/m?; ty, tq, t,
are the times, sec; F is the vector applied to the ex—
ternal force particle; m, is the mass of fluid displaced
by a particle equal to 7rd3p1/6, kg.
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